Abstract

The effects of process conditions on Fischer–Tropsch synthesis (FTS) product distribution were studied using a 1-L stirred tank slurry reactor and a 0.48%Re–25%Co/Al2O3 catalyst. It was found that the chain growth probability of C1 intermediate (α1) has the most dominant effect on CH4 and C5+ selectivity. α1 was found to be highly dependent on process conditions. Relatively constant values of C2+ growth probabilities with reactor residence time, as well as other process variables, suggest that 1-olefin readsorption has a minor effect on product selectivities. A low value of α1 and its different response to variations in process conditions, compared to higher chain growth probabilities, seems to support a hypothesis that a higher-than-expected yield of methane is caused by at least two separate methane formation pathways. Understanding these pathways and ways to suppress excess methane formation is a key factor in obtaining higher C5+ selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.