Abstract
The Fischer–Tropsch (FT) process can be described by the Anderson–Schulz–Flory model, although it does not handle the methane kinetics accurately. The value of chain growth probability (α) in the model is largely dependent upon the process conditions. The purpose of the research is to combine a CH4 kinetic model and process-condition-dependent chain growth probability α model and to calibrate the model parameters against experimental data from the literature. The combined model clearly improved the model predictions when compared to experimental data. Sensitivity analysis of the combined model showed the importance of adsorption coefficients to the outputs from the combined model. Testing the reactor temperature and feedstock composition shows that the outputs can be optimized, depending upon the length of carbon chains required in the output, and also suggested the importance of incorporating the effects of process conditions in the modeling of the FT product distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.