Abstract

Abstractd‐Bornyl methacrylate (BoMA) was chosen as a typical example of bulky monomethacrylate monomers, the polymerization of which led to the formation of a rigid polymer chain. To discuss the effect of primary polymer chain rigidity on intramolecular cyclization, we compared the solution copolymerization results of BoMA with 1 mol % ethylene dimethacrylate (EDMA; n = 1) and poly(ethylene glycol dimethacrylate) [CH2C(CH3)CO(OCH2CH2)nOCOC(CH3)CH2, n = 9 (PEGDMA‐9)] with those of methyl methacrylate (MMA) with 1 mol % EDMA and PEGDMA‐9; the dependence of the weight‐average degree of polymerization on conversion for the former BoMA copolymerization systems was completely opposed to that for the latter MMA systems, and this was a reflection of a reduced occurrence of intramolecular cyclization caused by the rigidity of the primary polymer chain. The effect of primary polymer chain rigidity on intramolecular crosslinking was discussed through a comparison of both BoMA/EDMA and MMA/EDMA copolymerizations. The correlations of the intrinsic viscosity, root‐mean‐square (rms) radius of gyration, and second virial coefficient with the molecular weight were examined for both BoMA/EDMA (90/10) and MMA/EDMA (90/10) copolymerizations in a dilute solution because microgelation was observed in solution MMA/EDMA (90/10) copolymerization as a reflection of a locally extensive occurrence of intramolecular crosslinking. The logarithmic plots of both the intrinsic viscosity and rms radius of gyration versus the molecular weight for MMA/EDMA copolymerization were compared with those for the corresponding BoMA/EDMA copolymerizations. The second virial coefficients were greater than 10−5 mol cm3 g−2 for BoMA/EDMA copolymers, even when the conversion was very close to the gel point, whereas they were quite low, that is, less than 10−5 mol cm3 g−2, for an MMA/EDMA copolymer obtained at more than 15% conversion. These were ascribed to a suppressed occurrence of intramolecular crosslinking, a reflection of the lessened flexibility of the polymer main chain and a steric effect due to the bulky d‐bornyl groups. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1086–1093, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.