Abstract

Successful implantation requires a receptive endometrium. We hypothesized that effects of endometrial stromal cells (ESC) on epithelial cell receptivity and trophoblast-endometrium interaction are menstrual cycle dependent. An endometrial in vitro 3D co-culture model of primary human ESC with the endometrial epithelial cell line (RL95-2) was constructed. Co-cultures were prepared using primary ESC from biopsies taken before the window of implantation (ESCbw) and during the window of implantation (ESCw), on cycle days 10-17 and 19-23, respectively. RL95-2 served as a constant parameter upon which the influence of ESC from different phases of the cycle was investigated. proMMP-2 (MMP, matrix metalloproteinase) and proMMP-9 secretion was tested in response to progesterone. Progesterone receptor B (PR-B) and plexin B1 protein expression and mRNA levels were investigated using immunofluorescence and RT-PCR, respectively. Progesterone increased proMMP-2 secretion in primary ESCbw (P = 0.0046) but decreased proMMP-2 and proMMP-9 secretion in ESCw (P < 0.0005). In the presence of ESCbw, JAR spheroid attachment rate to overlying RL95-2 cells was decreased (P < 0.0001), whereas in the presence of ESCw, attachment rate was unchanged. Progesterone treatment restored epithelial cell receptivity in co-culture with ESCbw (P = 0.00004). A correlation between spheroid attachment rate and plexin B1 mRNA level was observed (P = 0.01). PR-B protein and mRNA level were influenced by the interplay between RL95-2 and stromal cells. The effects of human primary ESC on epithelial cell receptivity and trophoblast-endometrium interaction depended upon whether the ESC were taken before or during the window of implantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call