Abstract

Bamboo was subjected to hydrothermal deconstruction to release xylans for the enhancement of enzymatic hydrolysis. The de-waxed and de-starched bamboo culm was non-isothermally pretreated in a batch reactor at a solid to liquid ratio of 1:10 g/mL at 120–240 °C. With the increase of the maximum heating temperature from 120 to 240 °C, the pH value of the liquor decreased from 5.98 to 2.71. A maximum yield of the non-volatile components in the liquid was achieved at a pretreatment severity of 4.20. With the increase of the pretreatment severity from 1.18 to 4.82, the yield of the solid residue decreased from 99.52 to 59.91 %, accompanying a decrease of xylan content from 28.86 to 0 %, an increase of glucan content from 42.80 to 59.14 % and an increase of lignin content from 28.10 to 40.57 %. The solid residues after the hydrothermal pretreatment were comprehensively characterized by FT IR, XRD, and element analysis. Enzymatic hydrolysis of the solid residues was assayed by commercial cellulase. Under enzymatic hydrolysis for 96 h, the enzymatic hydrolysis of the pretreated bamboo at the pretreatment severity of 4.82 was 81.16 %, which equaled to 4.7 times of that of the untreated bamboo. This study provided an environmentally friendly process to pretreat biomass for the production of energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call