Abstract
An Ni metal catalyst manufactured by the tapecasting method for use as a structural catalyst did not exhibit catalytic activity for the carbon monoxide (CO) removal reaction. However, the catalyst pretreated by an oxidation and reduction process showed superior activity for CO removal via water–gas shift and methanation, resulting in a decrease of the CO concentration to below 1% in reformate gas. The catalytic activity was generated by the reorganization of the surface structure of Ni metal, and enhanced by surface oxygen intermediates such as Ni(OH)2 and NiOOH promoted by NiO oxidized incompletely after the pretreatment. After the reorganization process induced by the pretreatment, the Ni metal on the surface was converted to active Ni and NiO which played the role of a promoter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.