Abstract
Ni/Al hybrid foams are a new class of innovative cellular composite materials consisting of open-cell aluminium (Al) foams electrochemically coated with nanocrystalline nickel (Ni). They may be used for lightweight construction elements or as crash energy absorbers. The Ni coating strengthens the Al foam achieving an up to ten times higher energy absorption capacities compared to the Al basis foam. Cellular materials such as foams provide a strong structure-property relationship as the macroscopic material properties strongly depend on the strut geometry and the material properties of the individual struts. The interface stability between the coating and the substrate foam is the dominant contribution in the strengthening mechanism of Ni/Al hybrid foams. Hence, micromechanical characterization is an important task for the design of components made of Ni/Al hybrid foams. A strong interface corresponds to a shear-stiff connection between substrate foam and coating, whereas a soft interface allows sliding between the two phases and hence reduces the buckling stiffness of individual foam struts resulting in lower strength and energy absorption capacity of the macroscopic foam. An increased critical energy release rate for interface cracking was revealed by in situ microcantilever bending tests prepared by focused ion beam (FIB) during bending tests in the scanning electron microscope (SEM) after the chemical pretreatment of the base foam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.