Abstract

As a common agricultural waste, corn straw (CS) has a refractory structure, which is not conducive to anaerobic digestion (AD). Appropriate pretreatment is crucial for addressing this problem. Thus, freeze vacuum drying (FVD) was proposed. In this study, fresh CS (F-CS) pretreated (5 h, −40 °C) by FVD and naturally dried CS (D-CS) were compared. Differences in substrate surface structure and nutrient composition were first investigated. Results show that a loose and porous structure, crystallinity, and broken chemical bonds, as well as higher proportions of VS, C, N, cellulose, hemicellulose, and crude proteins in F-CS show a potential for methane production. Besides, process performance and stability were also examined in both high (4, VS basis) and low (1, VS basis) S/I ratio AD. A higher degradation ratio of hemicellulose as well as richer dissolved microbial metabolites, coenzymes, tyrosine-like proteins, and hydrolysis rate of particulate organic matter in the F-CS system enhanced the efficiency of methane conversion. The cumulative methane yield increased from 169.66 (D-CS) to 209.97 (F-CS) mL/gVS in the high S/I ratio system (p = 0.02 < 0.05), and 156.97 to 171.89 mL/gVS in the low S/I ratio system. Additionally, 16S-rRNA-gene-based analysis was performed. Interestingly, the coordination of key bacteria (Clostridium_sensu_stricto_1, Bacillus, Terrisporobacter, Clostridium_sensu_stricto_7, Thermoclostrium, UCG-012, and HN-HF0106) was more active. Poorer Methanosarcina and Methanomassiliicoccus as well as richer Methanobrevibacter and Methanoculleus stimulated the co-relationship of key archaea with diverse methanogenesis pathways. This study aims to verify the positive effect of FVD pretreatment on AD of CS, so as to provide a reference for applications in waste management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.