Abstract

The aim of the study was to determine the effect of soaking in chlorinated water (100 ppm chlorine) or mild thermal treatment in water (55°C; 3 min) and modified atmosphere packaging on the quality and shelf life of dry coleslaw stored for 12 days at 4°C. Samples were packaged in low‐barrier film in modified atmosphere containing: 5/10/85, 20/25/55, 50/30/20, 70/30/0 %O2/% CO2/% N2, and air atmosphere. In‐pack gas levels, sensory quality, microbial counts and cell permeability were determined.In comparison to non‐processed coleslaw, pretreatment of coleslaw, both consisting in soaking in chlorine solution and a mild thermal processing, resulted in a reduction by approx. 1 logarithmic cycle for counts of psychrophilic and lactic acid bacteria as well as mesophilic and psychrophilic yeasts, by 1 and 1.7 logarithmic cycle for coliform bacteria and by 2 up to 3 logarithmic cycles for Pseudomonas bacteria. Modified atmosphere (irrespective of its composition) used in product packaging was found to have no effect on the count of mesophilic bacteria. An elevated content of carbon dioxide in modified atmosphere (10, 25 or 30%) inhibited growth of psychrophilic bacteria and Pseudomonas bacteria up to 6 days of storage. In the case of coliform bacteria growth inhibition during storage was recorded both in the samples packaged in air atmosphere and in the atmosphere of 50/30/20 and 70/30/0 %O2/% CO2/% N2. In samples packaged in the atmosphere of 70% O2 and 30% CO2 after 12 days the greatest cell permeability was recorded, which was connected with a deterioration of their microbiological quality. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.