Abstract

Dermal grafts are used for rotator cuff repair and augmentation. Although the invitro biomechanical properties of dermal grafts have been reported previously, clinical questions related to their biomechanical performance as a surgical construct and the effect of surgical variables that could potentially improve repair outcomes have not been studied. This study evaluated the failure and fatigue biomechanics of acellular dermis constructs tested in a clinically relevant size (4 × 4 cm patches) and manner (loaded via sutures) for rotator cuff repair. Also investigated were the effect of 2 surgical variables: (1) the fixation of grafts under varying magnitudes of pretension (0, 10, 20N), and (2) the use of reverse-cutting vs tapered needles for suturing grafts. Dermis constructs stretched ∼25% before bearing significant loads in the high stiffness region. Although 91% of the patches withstood 2500 cycles of loading to 150 N, the constructs stretched 13 to 19 mm after fatigue loading. This elongation could be reduced by 20% to 32% when reverse-cutting needles were used to prepare constructs or by applying 20 N of in situ circumferential pretension to the constructs before loading. Although dermis patches demonstrated robustness for use in rotator cuff repair, the patches underwent significant, substantial, and presumably nonrecoverable elongation, even at low physiologic loads. This study indicates that use of reverse-cutting needles for suture passage, preconditioning (cyclically stretching several times), and/or surgical fixation under at least 20 N of circumferential pretension could be developed as strategies to reduce compliance of dermis for its use for rotator cuff repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.