Abstract

The effects of internal hydrogen and environmental hydrogen on the hydrogen embrittlement of 304 austenitic stainless steels (ASSs) with varying degrees of pre-strain were investigated by a tensile test under cathodic hydrogen-charged, gaseous hydrogen and hydrogen-charged and gaseous hydrogen combined conditions. The internal hydrogen embrittlement of the 304 ASSs increased with increasing pre-strain, while the hydrogen embrittlement caused by the environment hydrogen increased and then decreased with increasing pre-strain. The hydrogen embrittlement mechanisms caused by the internal hydrogen or environmental hydrogen were different. The cracks caused by internal hydrogen or environmental hydrogen are mainly initiated in grain interior or at grain boundary, respectively. Under the coupling condition of internal hydrogen and environmental hydrogen, the hydrogen embrittlement of 304 ASSs was the strongest and increased with increasing pre-strain. Environmental hydrogen was dominant for low levels of pre-deformed specimens. Internal hydrogen was dominant for high levels of pre-deformed specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call