Abstract

The effect of source gas pressure on the gas-phase reaction chemistry of dimethylsilane (DMS) and monomethylsilane (MMS) in the hot-wire chemical vapor deposition process has been studied by examining the secondary gas-phase reaction products in a reactor using a soft laser ionization source coupled with mass spectrometry. For DMS, the increase in sample pressure has resulted in the formation of small hydrocarbons, including ethene, acetylene, propene, and propyne. This leads to a switch from silylene dominant chemistry to a free radical dominant one with the pressure increase at low filament temperatures of 1200 and 1300 °C. At the lower pressure of 0.12 Torr, the formation of 1,1,2,2-tetramethyldisilane by dimethylsilylene insertion reaction into the Si–H bond in DMS is favored over trimethylsilane produced from a free radical recombination reaction for a short reaction time. However, when the pressure is increased by 10 times, the gas-phase chemistry becomes dominated by the formation of trimethylsilane. We have demonstrated that trapping of the corresponding active intermediates by the small hydrocarbons produced in situ is responsible for the observed switch. In the study with MMS, the gas-phase chemistry is dominated by the formation of 1,2-dimethyldisilane and 1,3-disilacyclobutane at both pressures of 0.48 and 1.2 Torr. Unlike DMS, the gas-phase reaction chemistry with MMS does not involve free radicals, which are the precursors to produce small hydrocarbons. The absence of small hydrocarbons formed in situ with MMS explains the preservation in chemistry upon the increase in pressure when MMS is used as a source gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call