Abstract

Raman spectra of benzene have been obtained at pressure of 13 GPa. The results shows that with the increase of pressure,all the Raman bands blue shift,accompanied with the splitting and change of relative intensity of some spectral bands. For the vibrational Fermi resonance bands ν1+ν6—ν8,according to the Betran theory,the unperturbed peak separation Δ0 increases with pressure,which is due to the ratio of frequency-pressure of the combined ν1+ν6 bands is larger than that of fundamental ν8. As a consequence,the coupling coefficient ω and the intensity ratio Rf/a decrease. The Fermi resonance phenomenon disappears when the pressure is up to 11 Gpa,which can be explaned by high-pressure phase transition method. This report enriches the studies of environmental effect on the Fermi resonance,and provides positive reference value for the spectral certification and assignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.