Abstract

The combustion process integrated by coal gasification and chemical-looping combustion (CLC) could be used in power plants with a low energy penalty for CO2 capture. This work analyzes the main characteristics related to the CLC process necessary to use the syngas obtained in an integrated gasification combined cycle (IGCC) power plant. The kinetics of reduction with H2 and CO and oxidation with O2 of three high-reactivity oxygen carriers used in the CLC system have been determined in a thermogravimetric analyzer at atmospheric pressure. The iron- and nickel-based oxygen carriers were prepared by freeze-granulation, and the copper-based oxygen carrier was prepared by impregnation. The changing grain size model (CGSM) was used for the kinetic determination, assuming spherical grains for the freeze-granulated particles containing iron and nickel and a platelike geometry for the reacting surface of the copper-based impregnated particles. The dependence of the reaction rates on temperature was low, with the activation energy values varying from 14 to 33 kJ mol-1 for the reduction and 7 to 15 kJ mol-1 for the oxidation. The reaction order depended on the reacting gas and oxygen carrier, with values ranging from 0.25 to 1. However, an increase in the operating pressure for the IGCC + CLC system increases the thermal efficiency of the process, and the CO2 is recovered as a high pressure gas, decreasing the energy demand for further compression. The effect of pressure on the behavior of the oxygen carriers has been analyzed in a pressurized thermogravimetric analyzer at 1073 K and pressures up to 30 atm. It has been found that an increase in total pressure has a negative effect on the reaction rates of all the oxygen carriers. Moreover, the use of the CGSM with the kinetic parameters obtained at atmospheric pressure predicted higher reaction rates than those experimentally obtained at higher pressures, and therefore, the kinetic parameters necessary to design pressurized CLC plants must be determined at the operating pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call