Abstract

Moderate pressure accelerates hydride transfer catalyzed by yeast alcohol dehydrogenase, indicative of a large negative volume of activation [Cho and Northrop (1999) Biochemistry 38, 7470-7475]. A comparison of the effects of pressure on the oxidation of normal versus dideuteriobenzyl alcohol generates a monophasic decrease in the intrinsic isotope effect; therefore, the volume of activation for the transition-state of deuteride transfer must be even more negative, by 10.4 mL/mol. This finding appears consistent with hydrogen tunneling previously proposed for this dehydrogenase [Cha, Y., Murray, C. J., and Klinman, J. P. (1989) Science 243, 1325-1330]. However, a global fit of the primary data shows that the entire isotope effect arises from a transition-state phenomenon, unlike normal isotope effects, which arise from different vibrational frequencies in reactant states, and tunneling isotope effects, which arise from a mixture of both states. Assuming the phenomenon is tunneling, the isotopic data are consistent with a Bell tunneling correction factor of Q(H) = 12 and an imaginary frequency of nu(H) = 1220 cm(-1), the first so calculated from experimental enzymatic data. This excessively large correction factor and the large difference in the isotopic activation volumes, plus the low isotope effects at extrapolated pressures, challenge traditional applications of physical organic chemistry and transition-state theory to enzymatic catalysis. They suggest instead that something other than transition-state stabilization or tunneling is responsible for the rate acceleration, something unique to the enzymatic transition state that does not occur in nonenzymatic reactions. Arguments for the vibrational model of coupled atomic motions and the fluctuating enzyme model of protein domain motion are put forward as possible interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.