Abstract

Pressure-dependent luminescence spectra of trans-dioxo complexes of rhenium(V) with ancillary ethylenediamine ligands exhibit resolved vibronic structure in the O=Re=O symmetric stretching mode at room temperature. The intensity distribution within the vibronic progression changes with pressure, leading to band shapes that are also pressure-dependent. These spectroscopic features arise from coupled electronic states and depend on the energy differences between ground and excited states, which vary by 2500 cm(-1) for the three complexes with ethylenediamine, tetramethylethylenediamine, and tetraethylethylenediamine ancillary ligands. We describe the pressure-dependent vibronic structure and band shapes with anharmonic adiabatic potential energy surfaces for the ground states of all complexes. The calculated spectra reveal the pressure dependence of the energies of electronic origins, luminescence band maximums, offsets between ground- and emitting-state potential minimums, and vibrational frequencies. The largest pressure effects are observed where the coupled electronic states are close in energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.