Abstract

Concentrated Solar Power using supercritical CO2 (S-CO2) Brayton cycles offers advantages of similar and even higher overall thermal efficiencies compared to conventional Rankine cycles using superheated or supercritical steam. In this paper, a S-CO2 Recompression Brayton cycle is integrated with a central receiver. The effect of pressure drops in heat exchangers and solar receiver surface temperature on the thermal and ex-ergetic performance of the recompression Brayton cycle with and without reheat condition is studied. Energy, exergy and mass balance are carried out for each component and first law and exergy destruction are calculated. In order to obtain optimal operating condition, optimum cycle pressure ratios are obtained by maximising the thermal efficiency. The results showed that under low solar receiver pressure drops and solar receiver temperature approach, the S-CO2 Recompression Brayton cycle has more thermal and exergy efficiencies than the no reheat case. Pressure drop reduces the gap between reheat and no reheat case, and for pressure drops in the solar receiver of 2.5% or higher, reheat has significant impact on thermal and exergy performance of the cycle studied. The overall exergy efficiency showed a bell shaped, reaching a maximum value between 19.5–22.5% at turbine inlet temperatures in the range of 660–755 °C for solar receiver surface temperature approach among 100–200 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call