Abstract

Magnesium oxide is widely used as an adsorbent, catalyst, identifier of chemical and toxic pollutants, in water and gas purification processes. Mesoporous magnesium oxide powder has been synthesized by the method of deposition, spray pyrolysis and glycine-citrate-nitrate method, their crystal structure, microstructure, granulometric composition and adsorption properties have been studied. Optimal conditions for the production of magnesium oxide by the glycine-citrate-nitrate method have been determined, which make it possible to obtain a powder with average primary particle sizes of 12 nm and the smallest sizes of secondary particles starting from 70 nm. The influence of the method of obtaining nanostructured magnesium oxide powder on the physicochemical properties is established. High values of the total pore volume of 1.038 cm3 /g exhibited the MgO powder obtained by the precipitation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call