Abstract

The ductility of a preoxidized Ni 3Al (Ni-23Al-0.5Hf-0.2B. at.%) alloy with various grain sizes (17–193 μm) was evaluated by means of tensile tests at 600 and 760°C in vacuum. The preoxidation does not affect the ductility of the finest-grained material at either temperature, whereas it causes severe embrittiement in the largest-grained material, especially at 760°C. Auger studies revealed very little oxygen penetration along grain boundaries in the finest-grained material but substantial oxygen penetration in the largest-grained one. A continuous, thin Al-rich oxide layer which forms on the fine-grained samples protects the underlying alloy from oxygen penetration, preventing any loss of ductility, whereas the nickel-rich oxide which forms on the large-grained samples allows oxygen to penetrate along grain boundaries, causing severe embrittiement. The grain boundaries act as short-circuit paths for rapid diffusion of aluminum atoms from the bulk to the surfaces, and this is responsible for the change in oxidation product from Ni-rich to Al-rich oxide with decreasing grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call