Abstract
This paper presents the results of a study of the formation of localized shear in M1 copper of two types: as-received and after preloading by a quasi-entropic compression wave. The experiments were performed with hat-shaped samples using the split Hopkinson bar method. For both types of copper, dynamic compression diagrams were obtained at strain rates of 2100–2500 s−1. The copper structure was subjected to metallographic analysis, and the effect of preliminary shock deformation on the dynamic mechanical properties of the material was estimated. It is shown that preloaded higher-strength metals with a smaller degree of strain hardening are more prone to the formation of adiabatic shear bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.