Abstract
An experimental investigation of self-propagating high-temperature synthesis (SHS) of tantalum nitride (TaN) was conducted with tantalum compacts in nitrogen of 0.27–1.82 MPa. Effects of sample density, nitrogen pressure, and preheating temperature on the flame-front propagation velocity, combustion temperature, degree of conversion, and product composition were studied. Results showed that the SHS process of the tantalum/nitrogen reaction was characterized by the steady propagation of a planar combustion front, followed by a prolonged afterburning reaction. The flame-front velocity increased with nitrogen pressure, but decreased with sample density. Preheating the sample prior to ignition contributed higher combustion temperatures, thus leading to an increase in the conversion percentage. For the unpreheated samples, the conversion increased significantly with nitrogen pressure and reached around 80% at 1.82 MPa of N 2. With preheating temperatures between 150 and 300 °C, the conversion was increased by about 15% when compared with that without preheating. The nitride phase TaN was identified by XRD as the dominant composition in the combustion product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.