Abstract

It is well known that overheating asphalt bitumen can lead to oxidation and stiffening. While heating bitumen is an essential protocol in sample preparation, it is important to identify the oven setting time and temperature for lab testing. Current AASHTO standards do not specify exact oven settings for bitumen sample preparation prior to laboratory testing. This study is evaluating the effect of oven heating duration and pouring temperature during sample preparation in the rheological properties of neat and polymer-modified bitumen (PMB). Rheological properties are measured using Rotational Viscometer, Dynamic Shear Rheometer and Bending Beam Rheometer at grade-specific testing temperatures. A neat bitumen PG64-22 and two PMB PG70-22 and 76-22 in un-aged (original) and aged conditions were tested at two temperatures: 143°C and 185°C for 1/2, 2 and 4h. The effect of short-term aging by rolling thin film oven was also investigated. To investigate the rheological properties over a wide range of temperatures, temperature sweep testing was conducted from 35°C to 110°C at a 10rad/s frequency. The results suggest that there was no significant difference in the viscosity, complex modulus and creep stiffness for the tested bitumen. The RTFO aging index, absolute drop of complex viscosity and temperature aging indices were used to evaluate the bitumen preparation settings. The study recommends using the 143°C and 2-h heating for proper preparation prior to standard lab testing. The study also investigated the aging influence in rheological properties for neat and PMB using the black diagram, DSR function map, and critical-stiffness temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.