Abstract
The hydrogen assisted cracking susceptibility of Modified 9Cr–1Mo steel weld is evaluated by implant test by determining lower critical stress for different preheating and combination of pre, post heating conditions. The diffusible hydrogen present in the implant specimens for different test conditions is estimated. Residual stress distribution in the weld for different heating condition is estimated using SYSWELD software. For a combination of pre + post heating at 200°C, the diffusible hydrogen content of the weld comes down to 1.17 from 4.7 mL/100g and the lower critical stress of the implant specimen increases from 250 to 370 MPa. Preheating + post heating also brings down the peak tensile residual stress level in the weld joints and lowers the cracking susceptibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Science and Technology of Welding and Joining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.