Abstract

Effects of prior low cycle fatigue (LCF) cycling on the subsequent high cycle fatigue (HCF) limit stress corresponding to a life of 10 7 cycles are investigated for Ti-6Al-4V at room temperature. Tests are conducted at 420 Hz on an electrodynamic shaker-based system at several different LCF maximum loads and under subsequent HCF at R=0.1, 0.5 and 0.8 using a step loading procedure. Under these load combinations, which include the possibility of overload or underload effects if cracks form, there is no statistically significant effect of the prior LCF on the subsequent HCF limit stress. While LCF loading at a high stress of 900 MPa is seen to result in strain ratcheting, no distinct features on the fracture surface and different mechanisms of crack propagation from those obtained at lower maximum loads were observed. LCF loading up to 50% of expected life did not produce any indications of crack formation from either the stress limit data or the fracture surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call