Abstract

Creep does not only appear at high temperature, but also appears at low temperature for 316L stainless steel that threatens the safety of equipment. In this work, the creep behavior of as-received and pre-strained 316L stainless steel at 373K was investigated by uniaxial creep (UC) tests and small punch creep (SPC) tests. The parameters of power-law creep model were determined from stress dependence of UC tests. Then, the creep behavior of SPC test was analyzed by finite element (FE) simulation combined with power-law creep model. Comparing with experimental creep deflection, the results of FE simulation can reasonably reflect the creep behavior of as-received and pre-strained small punch specimens. Based on the comparison of as-received specimen and pre-strained specimen from UC test, SPC test and FE simulation, pre-strain significantly restrains creep behavior of 316L austenitic steel at 373K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.