Abstract

This study aimed to explore the roles of starch structure in α-amylase-catalyzed hydrolysis under moderate electric field (MEF). Corn starch was gelatinized by controlling the temperature procedure of rapid viscos-analysis, and then the pre-gelatinized starch (3.0 g) was treated by MEF (2.5 and 5 V/cm) in the presence of α-amylase (1.5 mL). Only a slight hydrolysis occurred for native starch, showing minor increases in reducing sugar content (RSC, ∼0.19 mg/mL), slight changes in granular and semicrystalline structure, and decreases in thermostability (the maximum decomposition temperature (Tmax) decreased from 322 to 300 °C). The densely-packed semicrystalline within starch granules was destroyed by pre-gelatinization, thus enhancing the hydrolysis and further decreasing the thermostability, presenting RSC values of 0.63–0.92 mg/mL and Tmax of 291–292 °C. Moreover, some special crystals were formed by IEF-induced orientation of hydrolyzed starch chains. Overall, these results confirmed that the semicrystalline structure of starch dominated in MEF-assisted hydrolysis, which could provide guidance for the application of electro-based techniques in starch modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call