Abstract

The physical properties study of the Bi2Sr2CaCu2Oy (Bi2212) ceramics samples sintered at low temperature has been carried out by measurement of electrical resistance and powder X-ray diffraction (XRD). The effects of Pr doping on the formation process of the Bi2212 phase, and its structural and superconducting features were studied. The samples were prepared by a solid-state reaction method from oxides and carbonate powders. The samples with nominal composition Bi2.12Sr1.90Ca1.02Cu1.96Li0.15Cl0.15Oy added with praseodymium oxide (Pr2O3) were sintered in air at 710°C. The Pr2O3 addition ranging between 0.1mass% and 1.2mass% promotes the formation of the Bi2212 phase in low temperature synthesis. The full-width at half maximum (FWHM) value of the (200) and (0010) XRD peaks is slightly decreasing in the samples for low level doping and reaches a minimum around 0.6mass%. The maximum zero resistance temperature (Tc) is observed at 82.5K for the sample with 0.6mass% Pr2O3 addition by sintering even at 710°C, which is about 150°C lower than that of the non-added Bi2212 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call