Abstract

The measurement of Protoporphyrin IX delayed fluorescence lifetime is a minimally invasive method for monitoring the levels of oxygen in cells and tissues. The excitation of Protoporphyrin IX during this measurement can lead to the formation of photoproducts in vitro and in vivo. The influence of their luminescence on the measured Protoporphyrin IX delayed fluorescence lifetimes was studied in solution and in vivo on the Chick's chorioallantoic membrane (CAM) model under various oxygen enriched air conditions (0mmHg, 37mmHg and 155mmHg). The presence of photoproducts disturbs such measurements since the delayed fluorescence emission of some of them spectrally overlaps with that of Protoporphyrin IX. One possible way to avoid this obstacle is to detect Protoporphyrin IX's delayed fluorescence lifetime in a very specific spectral range (620–640nm). Another possibility is to excite Protoporphyrin IX with light doses much lower than 10J/cm2, quite possibly as low as a fraction 1J/cm2 at 405nm. This leads to an increased accuracy of pO2 detection. Furthermore, this method allows combination of diagnosis and therapy in one step. This helps to improve detection systems and real-time identification of tissue respiration, which is tuned for the detection of PpIX luminescence and not its photoproducts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.