Abstract

The main yield components in durum wheat are grain number per unit area (GN) and thousand kernel weight (TKW), both of which are affected by environmental conditions. The most critical developmental stage for their determination is flowering time, which partly depends on photoperiod sensitivity genes at Ppd-1 loci. Fifteen field experiments, involving 23 spring durum wheat genotypes containing all known allelic variants at the PHOTOPERIOD RESPONSE LOCUS (Ppd-A1 and Ppd-B1) were carried out at three sites at latitudes ranging from 41° to 27° N (Spain, Mexico-north, and Mexico-south, the latter in spring planting). Allele GS100 at Ppd-A1, which causes photoperiod insensitivity and results in early-flowering genotypes, tended to increase TKW and yield, albeit not substantially. Allele Ppd-B1a, also causing photoperiod insensitivity, did not affect flowering time or grain yield. Genotypes carrying the Ppd-B1b allele conferring photoperiod sensitivity had consistently higher GN, which did not translate into higher yield due to under-compensation in TKW. This increased GN was due to a greater number of grains spike-1 as a result of a higher number of spikelets spike-1. Daylength from double ridge to terminal spikelet stage was strongly and positively associated with the number of spikelets spike-1 in Spain. This association was not found in the Mexico sites, thereby indicating that Ppd-B1b had an intrinsic effect on spikelets spike-1 independently of environmental cues. Our results suggest that, in environments where yield is limited by the incapacity to produce a high GN, selecting for Ppd-B1b may be advisable.

Highlights

  • Wheat is one of the most widely cultivated crops in the world, with an average annual production, in the last decade, of more than 700 million tons (FAO, 2017)

  • The results showed that the average daylength during the double ridge (DR) to terminal spikelet (TS) phase explained 73% of the variation observed in the number of spikelets spike−1 in Spain and 56% in Mexico-north (Figure 4)

  • Most studies on the relationship between wheat adaptation and genes that confer photoperiod sensitivity have been conducted in bread wheat (Beales et al, 2007; Diaz et al, 2012; GonzálezNavarro et al, 2015)

Read more

Summary

Introduction

Wheat is one of the most widely cultivated crops in the world, with an average annual production, in the last decade, of more than 700 million tons (FAO, 2017). The expected increase in world population, expected to reach 9.7 billion by 2050, suggests that the global agricultural production has to increase by 25–70% from the current levels (Hunter et al, 2017) This considerable challenge is even greater given the expected climate change scenarios. A mitigating strategy could be the tailoring of plant development cycles in order to avoid or escape from drought or heat events during the most sensitive phases of yield formation. To this end, among others measures, breeding programs could implement selection for a more efficient and precise phenology, maximizing yield in the prevalent environmental conditions (IPCC, 2014; Hunter et al, 2017)

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call