Abstract

Targeting metabolic determinants of exercise performance with pharmacological agents that would mimic/potentiate the effects of exercise represents an attractive clinical alternative to counterbalance the poor exercise capacity in patients with type 2 diabetes mellitus (T2DM). We examined the effect of 1-yr treatment with the insulin sensitizer peroxisome proliferator-activated receptor (PPAR)γ agonist rosiglitazone on aerobic exercise capacity and body fat composition/distribution in men with T2DM and stable coronary artery disease (CAD). One-hundred four men (age: 64 ± 7 yr; body mass index: 30.0 ± 4.4 kg/m2) with T2DM and CAD were randomized to receive rosiglitazone or placebo for 1 yr. Aerobic exercise capacity (exercise duration) was assessed with a maximal treadmill test, and body composition/distribution were assessed by dual-energy X-ray absorptiometry/computed tomography scans. At 1 yr, patients with T2DM under PPARγ agonist treatment showed a reduction in aerobic exercise capacity compared with the control group (exercise duration change, -31 ± 8 versus 7 ± 11 s, P = 0.009). Significant increases in body fat mass (3.1 ± 0.4 kg, 12%), abdominal and mid-thigh subcutaneous adipose tissue (AT) levels, and mid-thigh skeletal muscle fat were found (all P < 0.01), whereas no effect on visceral AT levels was observed (P > 0.05) under treatment. Subcutaneous fat mass gained under PPARγ agonist was the strongest predictor of the worsening in aerobic exercise capacity (P > 0.0001); no association was found with skeletal muscle fat infiltration nor visceral AT. Treatment with the insulin sensitizer PPARγ agonist rosiglitazone in patients with T2DM and CAD is associated with a worsening in aerobic exercise capacity, which seems to be mainly attributable to weight gain and subcutaneous fat mass expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.