Abstract

Gaussian-type soliton solutions of the nonlinear Schrödinger (NLS) equation with fourth order dispersion, and power law nonlinearity in the novel parity-time ()-symmetric quartic Gaussian potential are derived analytically and numerically. The exact analytical expressions of the solutions are obtained in the first two-dimensional (1D and 2D) power law NLS equations. By means of the linear stability analysis, the effect of power law nonlinearity on the stability of Gauss type solitons in different nonlinear media is carried out. Numerical investigations do confirm the stability of our soliton solutions in both focusing and defocusing cases, specially around the propagation parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.