Abstract

Chloroplasts isolated from powdery mildew-infected (Erysiphe polygoni DC) sugar beet leaves (Beta vulgaris L) showed a reduction in the rate of electron transport and in the accompanying ATP formation in noncyclic photophosphorylation (water as electron donor, NADP as electron acceptor) and little or no change in the rate of ATP formation in cyclic photophosphorylation catalyzed by phenazine methosulfate. The inhibition of noncyclic photophosphorylation appeared to lead in the parent leaves to a decreased rate of photosynthetic CO(2) assimilation and a shift in products resulting in a relative increase of amino acids. These changes were accompanied by alterations in chloroplast ultrastructure and by a reduction in the activity of enzymes necessary for the formation of organic acids (phosphoenolpyruvate carboxylase and malate dehydrogenase). These results are similar to the findings of Montalbini and Buchanan (1974 Physiol. Plant Pathol. 4: 191-196) with chloroplasts from rust-infected Vicia faba leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.