Abstract

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call