Abstract
The main aim of this study is to produce new powder metallurgy (PM) Cu-B4C composite electrode (PM/(Cu-B4C)) capable of alloying the recast workpiece surface layer during electric discharge machining process with boron and other hard intermetallic phases, which eventually yield high hardness and abrasive wear resistance. The surface characteristics of the workpiece machined with a PM/(Cu-B4C) electrode consisted of 20 wt% B4C powders were compared with those of solid electrolytic copper (E/Cu) and powder metallurgy pure copper (PM/Cu) electrodes. The workpiece surface hardness, surface abrasive wear resistance, depth of the alloyed surface layer and composition of alloyed layers were used as key parameters in the comparison. The workpiece materials, which were machined with PM/(Cu-B4C) electrodes, exhibited significantly higher hardness and abrasive wear resistance than those of machined with the E/Cu and PM/Cu. The main reason was the presence of hard intermetallic phases, such as FeB, B4C (formed due to the boron in the electrode) and Fe3C in the surface layer. The improvement of the surface hardness achieved for steel workpiece when using PM/(Cu-B4C) electrodes was significantly higher than that reported in the literature. Moreover, the machining performance outputs (workpiece material removal rate, electrode wear rate and workpiece average surface roughness (Ra)) of the electrodes were also considered in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.