Abstract

The effects of powder formulation, including elemental mixed powder (EMP) and alloy mixed powder (AMP), and energy density on the nitrogen content and microstructural characteristics of high-nitrogen steel prepared by selective laser melting were investigated. The results reveal that the samples prepared with EMP had more nonfusion flaws and a relatively low density, with a maximum of only 92.36%, while samples prepared with AMP had fewer defects and a relative density of up to 97.21%. The nitrogen content and microstructural characteristics were significantly influenced by the laser energy density. The relative density of the EMP samples increased from 88.29% to 92.36% as the laser energy density increased from 83.3 J/mm3 to 125 J/mm3, while the relative density of the AMP samples rose from 93.31% to 97.21%, and the number of defects and the nitrogen content decreased. The mechanical properties of the AMP samples were superior to those of the EMP samples when the energy density rose, and the strength of the high-nitrogen steel first rose and then fell. The AMP samples showed the best mechanical properties when the energy density was 104.2 J/mm3, which corresponds to a laser power of 250 W, a scanning speed of 1000 mm/s, and a layer thickness of 30 μm. The corresponding values of yield strength, ultimate tensile strength, and elongation were 958.8 MPa, 1189.2 MPa, and 30.66%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call