Abstract

In high-velocity oxy-fuel (HVOF) spraying of WC-Co coatings, the decomposition and decarburization of WC during deposition are responsible for their much lower toughness compared with a sintered bulk WC-Co. In a previous study, Warm Spray (WS) process, which is capable to control the flame temperature used to propel powder particles, was successfully applied in an attempt to suppress such detrimental reactions by keeping particles’ temperature lower than their melting point. The coatings deposited by WS process showed no or little formation of W2C and η phases and demonstrated moderately improved fracture properties. However, there is still a gap in fracture toughness between WS coatings and the corresponding sintered bulk. In order to optimize the properties of the WS coatings, the effect of original powder sizes were investigated. Microstructural characterization and phase analysis were carried out on deposited coatings by SEM and XRD. The results show that the feedstock powder size has substantial effects on the properties of the coatings, i.e., the smaller powder showed improved properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.