Abstract

In order to study the effect of potassium on the renal tubule, proximal convoluted tubules were dissected from rabbit kidneys and perfused in vitro. Omitting potassium from both the perfusate and bath caused the rate of fluid absorption and the transtubular potential difference to fall to zero. This effect was due to the absence of potassium in the bathing medium since no change was observed when potassium was omitted from the perfusate only. With 0.5 and 1.0 meq/liter of potassium in the bath, there was still a significant decrease from control in both the potential difference and the rate of fluid absorption. With 2.5 meq/liter of potassium in the bath, the results did not differ from control. In further studies, tubules were perfused with 10 meq/liter of potassium in both perfusate and bath. There was no change in the potential difference of fluid absorption. These results are consistent with the view that active transtubular transport of sodium is linked to the influx of potassium into the cell at the peritubular membrane and that this is probably mediated by sodium-potassium-ATPase. Our results also suggest that the variations of potassium concentration in the physiological range do not affect proximal tubular function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call