Abstract

Mechanical and intracellular electrical activity were recorded simultaneously from small intestinal smooth muscle of the dog. Tonic and phasic contractions due to exogenous acetylcholine and elevated external K+ concentration were spike-dependent in longitudinal and inner circular muscle layers and spike-independent in the outer circular muscle layer. Voltage-tension curves were generated by graded depolarization of the membrane. In spike-dependent longitudinal and inner circular muscle layers the threshold voltage for initiation of spikes and contraction was approximately --53 mV. In spike-independent outer circular muscle layer the voltage threshold for contraction was approximately -42 mV. The resting membrane potential in longitudinal and inner circular muscle layers was close to the voltage threshold for initiation of spikes and contraction. In contrast, in the outer circular muscle it was approximately 20 mV more negative to the voltage threshold for contraction. In the outer circular muscle layer of whole-thickness preparations an increase in the amplitude of phasic contractions caused by acetylcholine was associated with an increase in the amplitude of the slow waves. Tone was related to the resting membrane potential. In preparations of isolated outer circular muscle acetylcholine caused depolarization of the membrane potential, slow waves and phasic contractions; comparable depolarization by increases in external K+ concentration did not induce slow waves or phasic contractions. Comparison of the effect of acetylcholine on outer circular muscle with the voltage-tension curve for this muscle layer showed that the top of the slow wave was associated with just the contractile force predicted by the voltage-tension curve. This suggests that acetylcholine altered the force of phasic contraction of the outer circular muscle through a voltage-dependent mechanism. In non-neural cells located on the serosal side of the outer circular muscle layer of the dog, cat and rabbit, changes in external K+ concentration depolarized the membrane and abolished slow waves. There was no response to acetylcholine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.