Abstract

Post-treatment of mesoporous titanium dioxide films by TiCl4 solutions is commonly applied during the fabrication of solid-state dye-sensitized solar cells (ssDSCs), as this operation markedly improves the performance of the photovoltaic device. The effect of the post-treatement upon the charge carrier dynamics was scrutinized in ssDSC aiming at unraveling its mechanism. Kinetic studies carried out using femtosecond and nanosecond transient absorption spectroscopy, showed that a biphasic electron injection from the dye excited state is observed, for both treated and non-treated films, which kinetics is not significantly affected by the surface modification step. However, hole injection in the hole transport material (HTM) spiro-OMeTAD and charge recombination were found to be markedly slower in TiCl4-treated films. These findings are rationalized by a model describing the interaction at the interface between TiO2, the dye-sensitizer and spiro-OMeTAD. Rather than resulting from a modification of the energetics of the conduction band of the oxide, the effect of the TiCl4 post-treatment appears to be associated with a subtle change of the film morphology. Results emphasize the importance of controlling the contact at the heterojunction between the HTM and the sensitized semiconductor oxide network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.