Abstract
Brake pad is the combination of lining and metallic components, e.g. steel backing plate (disc brake) and aluminum brake shoe (drum brake). Shear bond strength plays a major role to provide the safety and/or drive performances. This work aimed to study the processing factors affected the bonding strength. The molding temperature couple with post-curing temperature was simultaneously analyzed in order to optimize the processing temperature. The shear bond strengths of metallic plates were continually investigated with regard to the effect of different surface treatments. The obtained results indicated that the mechanical strength was increased as the molding temperature raised in ranges of 160°C to 180°C. Conversely, the deterioration of adhesive strength was progressively presented with rising post curing temperature. In comparing different backing plate, aluminum showed the higher shear bond strength than that of steel plate. In fact, the weakened property of aluminum in nature would be easily destroyed by mechanical treatments. From the shear tested results, an increase of surface roughness was inversely changed the shear bond strength. On the other hand, the contact angle of water droplet affected directly to adhesive strength. It was suggested that an adding surface roughness, commonly used in automotive industry, was inappropriate criteria, whist geometrical surface should be taken into account for improving the shear bond strength. Moreover, the contact angle and mechanical interlocking were recommended to use as a criteria of brake pad shear strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.