Abstract

The influence of microstructure on the indentation-strength and solidparticle erosive wear behaviour of a liquid-phase-sintered (LPS)alumina subjected to coarsening, quenching and crystallisationheat-treatments were investigated. Strength as a function of cracksize using Vickers indentations of varying loads was assessed. Theshort-crack toughness curves (T-curves) of the materials wereevaluated from indentation-strength data which is pertinent to wearproperties, since wear is governed by fracture characteristics atsmall flaw sizes. The effects of impact angle and particle velocityon erosive wear rates were also analysed. The relationship betweenshort-crack toughness behaviour and erosion resistance are discussedwith reference to the material microstructures and phase composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.