Abstract
This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. The fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.