Abstract

BackgroundThe global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor.MethodsSystemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured.ResultsαMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions.ConclusionsThe portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery.

Highlights

  • The epidemic of Type 2 Diabetes (T2D) affects almost 400 million people worldwide [1] and is predicted to increase in parallel with the obesity epidemic

  • We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucosecotransporter-3 (SGLT3) as the possible sensor

  • But not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions

Read more

Summary

Background

The global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucosecotransporter-3 (SGLT3) as the possible sensor

Methods
Results
Conclusions
Introduction
International Diabetes Federation Diabetes Atlas 2013
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call