Abstract

A series of different metal centered 5,15-Bis(4-aminophenyl)-10,20-bis(4-bromophenyl)porphyrins (PorM) where M = H2, MnOAc, FeCl, Co or Zn were synthesized, and then encapsulated in zeolite imidazole framework-8 (ZIF-8) by typical template directed strategy to generate PorM@ZIF-8 metal organic frameworks (MOFs). These composites were characterized by UV-vis, FTIR, XRD, FESEM and HRTEM methods. Each prepared PorM@ZIF-8 MOF retained the molecular structure of porphyrin and crystal structure of ZIF-8. It is clearly shown that porphyrin centered metal ions will affect MOFs morphology. Both PorH2@ZIF-8 and PorZn@ZIF-8 gave a rhombic dodecahedron, PorMnOAc@ZIF-8 gave a truncated hexagonal prism-like structure, while no specific structures were obtained for PorFeCl@ZIF-8 and PorCo@ZIF-8 due to aggregation as characterized by FESEM spectrum. Oxygen reduction catalytic ability of ZIF-8, PorM and PorM@ZIF-8 were measured in alkaline condition (0.1 M KOH) with the number of electrons transferred being [Formula: see text] = 2.20–2.60 and generating HO[Formula: see text] as the oxygen reduction product. The catalytic property slightly increased after the porphyrin was encapsulated, due possibly to the capacity limit, inappropriate molecular distance or the direction of encapsulated porphyrin molecular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call