Abstract

High-velocity oxy-fuel-sprayed FeCrMoMnWBCSi amorphous metallic coatings were sealed with sodium orthosilicate (Na 3SiO 4), aluminium phosphate (AlPO 4), and cerium salt sealants. The microstructure of the sealed coatings was characterised by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. Corrosion behaviour was examined using electrochemical methods of potentiodynamic polarisation, cyclic polarisation, electrochemical impedance spectroscopy, and Mott–Schottky tests. The results indicated that the uniform corrosion resistance of the three sealed coatings was enhanced greatly, and the passive current densities were decreased by one order of magnitude after the sealing treatments. The AlPO 4 sealant can penetrate the coatings by no less than 50 μm and enhance their hardness, which exhibited a more uniform corrosion resistance, fairly good pitting corrosion resistance, and can be applied in long-term corrosive and/or abrasive environments. The cerium salt-sealed coating showed better pitting corrosion resistance but inferior corrosion resistance in the local regions of micro-cracks, which was practically used for temporary corrosion protection. The Na 3SiO 4-sealed coating showed better uniform corrosion resistance and inferior pitting corrosion resistance, which can be applied in short-term corrosion environments. The stability of the passive film affected the corrosion behaviour of the sealed coatings. The AlPO 4-sealed coating performed better as a protective passive film during the long-term immersion test for a lower defect concentration and a more protective passive film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.