Abstract

AbstractA series of porous thermoreversible hydrogels were prepared from N‐isopropylacrylamide (90 mol %) and poly(ethylene glycol) methylether acrylate (10 mol %), which was derived from poly(ethylene glycol) monomethylether, N,N′‐methylenebisacrylamide, and porosigen, or poly (ethylene glycol) (PEG) with different molecular weights (MWs). The influence of pore volume in the gel on the physical properties, swelling kinetics, and solute permeation from these porous gels was investigated. The results show that the surface areas, pore volumes, and equilibrium swelling ratios for the porous gels increased with increasing MW of PEG, but the shear moduli and effective crosslinking densities decreased with increasing MW of PEG. The results from the dynamic swelling kinetics show that the transport mechanism was non‐Fickian. The diffusion coefficients of water penetrating into the gels increased with increasing pore volume of the gels. In addition, we also studied solute permeation through the porous gel controlled by temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5490–5499, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.