Abstract

In this study, the effects of pore to throat size ratio on the interfacial heat transfer coefficient for a periodic porous media containing inline array of rectangular rods are investigated, numerically. The continuity, Navier–Stokes, and energy equations are solved for the representative elementary volume (REV) of the porous media to obtain the microscopic velocity and temperature distributions in the voids between the rods. Based on the obtained microscopic temperature distributions, the interfacial convective heat transfer coefficients and the corresponding Nusselt numbers are computed. The study is performed for pore to throat size ratios between 1.63 and 7.46, porosities from 0.7 to 0.9, and Reynolds numbers between 1 and 100. It is found that in addition to porosity and Reynolds number, the parameter of pore to throat size ratio plays an important role on the heat transfer in porous media. For the low values of pore to throat size ratios (i.e., β = 1.63), Nusselt number increases with porosity while for the high values of pore to throat size ratios (i.e., β = 7.46), the opposite behavior is observed. Based on the obtained numerical results, a correlation for the determination of Nusselt number in terms of porosity, pore to throat size ratio, Reynolds and Prandtl numbers is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call