Abstract

Summary Observations of pore structure in thin-sections are related to the performance of stable, first-contact-miscible displacements in reservoir cores and then to simulations of displacement performance of CO2 corefloods. Results of effluent composition measurements are reported for miscible displacements in seven core samples—three sandstones and four San Andres carbonates from west Texas or eastern New Mexico. Those displacements are interpreted by fitting the measured effluent compositions to the Coats-Smith (C-S) model, which represents the flow as occurring in flowing and stagnant fractions with mass transfer between them. Observations of thin-sections, including measurements of pore-size distributions and a simple measurement of spatial correlation of pore sizes, are also reported. Comparison of displacement results and thin-section data indicates that wide pore-size distributions and preferential flow paths are characterized in the C-S model by high dispersion coefficients and low flowing fractions. Simulations of the interactions of phase behavior and flow in nonuniform pore structures indicate that wide pore-size distributions and preferential flow paths can significantly increase residual oil saturations (ROS’s) in CO2 floods over those for uniform pore structures. Thus, heterogeneities observable at the scale of a thin-section have significant effects in laboratory core but much smaller effects in displacements at field scale. Large-scale heterogeneities present in field floods, however, probably cause similar increases in residual saturation in some fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.