Abstract

KIT-6 mesoporous silica aged at 40, 100, and 150 °C were used as hard templates to prepare different mesoporous MnO2 catalysts, marked as Mn-40, Mn-100, and Mn-150, respectively. The catalytic activities of these catalysts and the effect of pore sizes on ethanol catalytic oxidation were investigated. Mn-40, Mn-100, and Mn-150 have triple, double, and single pore systems, respectively. On decreasing the aging temperature of KIT-6, the pore sizes of KIT-6 decrease and that of mesoporous MnO2 catalysts increase. The pore sizes and catalytic activities increase in the order: Mn-40 >Mn-100 > Mn-150. Mn-40 catalyst has a higher TOF (0.11 s−1 at 120 °C) and the best catalytic activity for ethanol oxidation because of a bigger pore size with three pore systems with maximum distribution at 1.9, 3.4, and 6.6 nm, decrease in symmetry and degree of order, more surface lattice oxygen species, oxygen vacancies resulting from more Mn3+ ions, and better low-temperature reducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.