Abstract

Capillarity in small, confined pores has a pronounced effect on the depression of the dissociation temperature of gas hydrates, known as the Gibbs–Thomson effect. However, this effect remains poorly understood in natural fine-grained sediments with wide pore size distributions. This study investigated the effect of pore size distributions of fine-grained sediments on the dissociation temperature of a gas hydrate. A gas hydrate was synthesized under partially water-saturated conditions in nanosized silica gels and in various natural fine-grained sediment samples, including sand, silt, diatoms, a diatom–sand mixture, and clayey sediment. The synthesized hydrate samples were thermally dissociated under isochoric conditions, while the melting temperature depression and the shifted phase boundaries were monitored. We observed a dissociation temperature depression of approximately 0.1–0.3 °C in silt, 0.2–0.4 °C in the diatom sample, and 1.2–1.5 °C in clayey silt, while no temperature depression was observed in ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.